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ABSTRACT

We consider three simple approaches to rounding error in least squares

regression. The first treats the rounded data as if they were unrounded, the

second adds an adjustment to the diagonal of the covariance matrix of the

variables, and the third subtracts an adjustment from the diagonal. The

third, Sheppard's corrections, can be motivated as maximum likelihood with

small rounding error and either (1) joint normal data or (2) normal residuals,

"regular" independent variables, and large samples. Although an example and

theory suggest that the third approach is usually preferable to the first two,

a generally satisfactory attack on rounding error in regression requires the

specification of the full distribution of viriables, and convenient

computational methods for this problem are not currently available.
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ROUNDING ERROR IN REGRESSION:

THE APPROPIATENESS OF SHEPPARD'S CORRECTIONS

Arthur P. Dempster and Donald B. Rubin

1. Introduction

our purpose is to clarify the problem of adjusting estimated regression

coefficients for rounding errors in the data. First, we contrast three

methodologies which have been suggested. Two of these lead to simple but

different adjustments. The remaining methodology uses likelihood analysis and

leads to adjustments which depend on the choice of a prior (marginal)

distribution for the design matrix. Second, we derive some details of

likelihood analysis for the limiting case of small rounding error. We use our

results to point out two circumstances under which likelihood analysis leads

approximately to adjustment via Sheppard's (1898) corrections.

Adjustments for rounding error can be surprisingly large, especially when

compared to the sampling standard deviation of estimated regression

coefficients. In fact, although the standard deviation is generally

proportional to n-1 1 2 as sample size n increases, the rounding error

adjustment does not decrease as n increases. Furthermore, the size of the

adjustment is substantially increased when the design matrix is ill-

conditioned, so that well-known numerical accuracy problems associated with

practically important, rounding error problems.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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An artificial numerical example serves to illustrate potential

diffeiences among adjustment techniques. We construct a 4-variate normal

distribution of (Y, X11 X2, X3) by specifying zero means and covariance

matrix

1 1 P P 4
- 1 p2 2

- . 12

This covariance matrix coms from allowing (YI" Xl, X2, 13) to depend on

NID(0,1) variables (ZI, Z2, Z3, z4), as follows: Y - I
X 1  Z1  -2 2  + -2 3 ,  and

22

X3-' 1 +(1-p2)/2 (Z2 + 24). To obtain a reasonably ill-conditioned
A

design matrix we set P - .9. Five different regression fits of the form Y -

b+ b1 I 1 + b2 12 + b3 13 are suimarized in Table 1, along vith the

associated multiple R2. Estimated standard deviations are shown in

I parentheses for two of the fits.

The first column in Table 1 shows the fit obtained with the actual

II

covarvance matrix, corresponding to an infinite sample or equivalently to the

true model, so that sampling error is zero. The second colum of Table i is

based on a random sample of size n - 10,000 from the 4-variate normal as

defined above with P -.9. The sampling standard deviations of the

estimated b, b2, b3  are calculated in the usual least squares way. The

differences between the first two columns are comfortably within 20 limits

for error.

-2-
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The remaining three columns of Table I are based on analyses of the same

sample of 10,000 as the second column, except that the data were rounded

before analysis. Specifically, Y was rounded to the form 0 a 03 03 0, X1

was rounded to 0 *0 0 , X2 was rounded to 0 - 0, and X3 was rounded

to 0. If we perform least squares fitting on the rounded data, we obtain the

results shown in column 3 of Table 1, where the standard deviations are

computed from the usual formula ignoring rounding. Comparing columns 1, 2,

and 3 shows that rounding can lead to quite degraded accuracy of estimation,

and that nominal sampling standard deviations can be misleading indicators of

typical error.

Columns 4 and 5 of Table I assess the results of two simple adjustment

strategies; one gives reasonable results, whereas the other is worse than no

adjustment at all. Column 4, labelled Sheppard, is obtained by subtracting a

term of the form 62/12 from the diagonal elements of sample covariance

matrix calculated using the rounded data, where 6 denotes the width of the

rounding interval, i.e., .001 for Y, .01 for X1, .1 for X2, and 1.0

for X3. Column 5, headed BRB, was obtained in exactly the same way as column

4, except that the appropriate 62/12 was added to each diagonal element of

the sample covariance matrix. The letters BRB refer to Beaton, Rubin, and

Barone (1976) who present an analysis of rounding error in regression which

could lead the unwary to an adjustment similar to that shown in column 5. We

discuss the BRB analysis in Section 2. Our theoretical results imply that

nonnormal but regular distributions for (X1 , X2, 3) would produce similar

outcomes, where regular is defined in Section 4, but that the outcomes would

be different for a nonregular distribution of (X1 , X2 , 3), uniform for

example.

-3-



Table I

True Unrounded Uncorrected Sheppard BRD
Model Sample Rounded Corrected Corrected

b ..2705 .2791 .4450 .2987 .5260
(.0098) (.0087)

b2  .2705 .2610 .1634 .2534 .1250
(.0098) (.0079)

b3  .4618 .4536 .3738 .4502 .3176
(.0055) (.0052)

R2  .9500 .9495 .9393 .9488 .9329

rive sets of regression coefflent. and associated multiple
correlations and standard deviations.

I -4-
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2. Theoretical Bases for Adjustment.

Probability models for rounding errors must be interpreted with great

care if they are to lead to sound adjustments for rounding error. In support

of this proposition we review two theoretical arguments which lead to

estimates such as those shown in columns 3 and 5 of Table 1. We then

introduce likelihood analysis, and draw attention to an essential difference

from the other two arguments: likelihood analysis uses the conditional

distribution of the unobserved unrounded values given the rounded data,

whereas the other arguments use only the marginal distribution of the

difference between rounded and unrounded values.

Consider data generated by the familiar linear model

Y - 1 0 + X +E (1)
- 0 . -1 -

The n x I response vector Y is a linear combination of k predictor

variables, where X denotes the n x k design matrix giving the values of

the k predictors for the n observations, I is the n x I vectors of

ones, and 8 = (80) is the (k+1) x I vector of linear regression

coefficients. The residual variation denoted by the n x I random vector

2E is assumed to consist of independent N(0,O ) components. Normality is

not required for the first two arguments we present, but complete model

specification is needed for likelihood analysis.

In principle, Y and X are directly observable whereas B and E are

unknown, but in practice we observe only rounded values Y* and X*

differing from Y and X by rounding error which we denote by e and d,

i.e.,

(¥Y,X*) - (Y,X) + (e,d) • (2)

*
. - . -,-- . _,.r . , . ,-5-W
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After observing (y*,X*) we can say with certainty only that the true (Y,X)

lies in a rectangular region centered at (Y*,X*), or equivalently that

(e,d) lies in a congruent rectangle translated to the origin.

Theoretical analysis requires hypotheses about the distribution of

(e,d). Initially we assume that the rounding error may be regarded am

uniformly distributed over the rectangle. In Section 3, we introduce specific

notation for the probability density of (e,d).

Combining equations (I) and (2) yields

*-18 + X* 0 + (E-dO +e) (3)
. - .1 . - I

which has the same form as (1) except the Z is replaced by E-dO +e. Least

squares with model (1) can be motivated when the n components of E are

uncorrelated, with zero means and constant variancel consequently, least

squares with model (3) can be motivated if a similar condition plausibly holds

for the n components of E-dO 1+e, because then a least squares analysis

based on (Y*,X*) should produce unbiased estimates of 0 with Gauss-Markoff

optimality. Durbin (1954) records the part of this argument depending on zero

means of K-dO +e to conclude that the uncorrected least squares estimate is

unbiased. This argument leads to no adjustment for rounding and thus to the

estimate in column 3 of Table 1. Cochran (1968) provides further discussion.

Our second theoretical argument is an extension of the Beaton, Rubin, and

Barone (1976) study of rounding in regression. BRB use computer simulation to

recreate the unknown (Y,X) from the observed (Y*,X*), and then compute a

least squares estimate of 0 from the simulated (Y,X). Since a single

choice of (Y,X) may not be typical, BRB repeat the simulation many times,

drawing (e,d) each time from a uniform distribution over the rounding

rectangle and computing a least squares for each (Y,X). The main point

-6-



of BRB is that the observed variation among these recreated least squares

estimates is useful, in the numerical analysis sense, for exhibiting the range

of the possible disturbances due to rounding.

BRB illustrate the technique on the much analyzed Longley (1967) data.
A

They average the simulated 8 vectors for the Longley data in order to show a

A
substantial systematic difference between the simulated 8 and uncorrected

least squares applied to the rounded data.
A

The BRB average 8 over a long sequence is approximately

ave[(X*+d)T (X*+d)]- I [(X*+d)T (Y*+e)] • (4)
d,e

As BRB show, for small rounding intervals, the use of (4) is effectively the

same as adding the appropriate 62/12 terms to the diagonals of the sample

covariance matrix of (Y*,X*), as illustrated in column 5 of Table 1. With

our artificial data, we have an advantage over BRB with the Longley data,

because we know the true 8 and so can see directly that (4) appears to be

defective as an adjusted estimator.

We believe that the Durbin-Cochran and BRB approaches fail in our example

because the reasoning is insufficiently conditional. An important element in

the justification of least squares for the case of unrounded data from model

(1) is that, whatever may be the real world processes producing X and E,

the two parts must be unrelated in the sense that knowledge of X does not

provide any information about E. The parallel requirement fails in the case

of model (3), because the process of determining X influences both X* and

E-dO.+e jointly, i.e., X determines both X* and d, so that E-d$ +e

no longer has its initial approximately uniform distribution conditional on

the observed X*.

-7-



I
While the Durbin-Cochran argument implicitly assumes that the a priori

distribution of B-dO+!e remains valid given X*, the BRB argument goes a

step further and implicitly assumes the initial distribution of -dO +e holds

given both Y* and X*. We say this because the BRB device is to draw from

the initial uniform distribution of d and e after Y* and X* are fixed.

The implicit assumption fails because observation of Y* and X* can convey

a substantial amount of information about d and e, especially when large

correlations exist among the variables.

The underlying idea of likelihood analysis is to consider the sampling

density of (Y, X, Y*, X*) given B and a2. Holding (Y*, X*) fixed at

their observed values in this density leads to a function of (0, 2 , Y, X).

To obtain a likelihood function of the parameter (B, a 2), it is necessary to

integrate out the random variable (Y, X) given the fixed (0, 02 , Y*, X*),

which is equivalent to integrating d and e over their conditional

distribution given Y*, X*, B and 02

Likelihood analysis of rounding error was introduced by Fisher (1922) and

elaborated by Lindley (1950). Fisher and Lindley show that likelihood

analysis justifies the use of Sheppard's corrections when sampling normal

populations with small rounding error. In Section 3 we extend the Fisher-

Lindley analysis to more general regression models and show that non Gaussian

assumptions about the distribution of X can also lead to likelihood

justification for Sheppard's corrections in large samples.

Derivation of Sheppard's corrections from sampling theory may be found in

Bisenhart (1947), Haitovsky (1973), Kendall and Stuart (1962), and Wold

(1934). Since our experience with simple numerical examples like that shown

in Table I has led us to mistrust the use of standard sampling theory to

justify adjustment for rounding, we do not review literature on sampling bases

for Sheppard's corrections.



3. Likelihood Analysis for Small Rounding Error

The analysis here uses the standard linear model (1) with independent

N(O, a 2) error components E. As noted in Section 2, likelihood analysis

requires that we average over the conditional distribution of (Y, X) given

2
( a, a2 , y*, X*). It follows that distributional assumptions about X are

required to carry out the analysis and that the resulting adjustments may

depend on the distribution of X.

In the absence of rounding error, least squares estimates of 8 can be

justified as maximum likelihood estimates based on model (1), independent of

any assumed sampling model for X whose parameter 0 does not depend on

2or 0 Our problem is to find corrected maximum likelihood estimates when

rounding is present. We restrict details to first order corrections holding

in the limit when rounding error is small. Our theoretical analysis is thus

directed at finding small adjustments to the least squares estimates such that

the adjusted estimates are first order approximations to maximum likelihood

estimates.

We suppose that the rows of X are independently distributed according

to a specified model depending on parameter 8. Denoting the rows of (Y, X)

by (Y X) for i " 1,2,...,n, we suppose that X has density gi(J0).

Hence, if we could observe the unrounded (Y, X) the log likelihood function

would be

21 n 2 n
L(8, o2, 9) - - -- (Yi-8 0 -xi 81)2 + l log gi(xiIe) (5)

" " 202 i-1i i-1~

which we call the complete-data log likelihood. We assume throughout our

discussion that the rounded data (Y*, X*) are fixed at their observed

values, and hence the unadjusted estimates *, o*, and 0- are also fixed

and known, where (0, *, 8') is obtained by maximizing (5) after

S-9-
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substituting (Y*, X*) for (Y, X). Note that 8* and 0* are foUnd by

maximizing the first term of (3) whereas 8* is found by maximizing the

second term.

Our mathematical discussion i heuristic in the sense that we do not

carry out the detailed analysis required to justify our mathematical argument

in terms of precise regularity conditions on the functions gi') in a

neighborhood of (X*, e*). Our mathematical device for obtaining adjustments

is as follows. The EM algorithm of Dempster, Laird, and Rubin (1977) applies

to the computation of maximum likelihood estimates when data are incomplete,

as in our case when (Y*, X*) is observed but (Y, X) is not. The EM

technique is iterative, but the rate of convergence depends on the fraction of

missing information. When the rounding error is vanishingly small, the EM

technique converges in one iteration (to the desired first order of

approximation), starting from initial estimates (B*, 0*, 8*).

The required iteration of the EM method has two steps. First, in the E-

step, we average the complete-data log-likelihood (5) over the unknown

(Y, X) given the observed rounded (Y*, X*) and the current estimates

(W', 0*, 8"). Second, in the M-step, we maximize the resulting function of

(0, 0, 8). Since we are concerned with adjusting 8*, we need to carry out

the E-step only for the first term in (5) which depends only on the familiar

sufficient statistics consisting of the sums, sums of squares and products

nX (1, Y i. y i)" Having found the appropriate adjustments to

i= 1

these sufficient statistics, the M-step by definition simply computes the

estimates in the usual (i.e., least squares) way from the adjusted

statistics. In particular, if we can show the first order corrections to the

-10-



quadratic statistics are Sheppard's corrections, then we have shown that least

squares applied to Sheppard-corrected basic statistics gives the desired first

order corrected maximum likelihood estimates.

To simplify notation, the required details of the E-step are presented

here for the sums, sums of squares and products of Z = (X, Y). We let

f be the density of z where * - (B, a, e).

By expanding fi(Z about Z we obtain the first term Taylor
i -I

series approximation
k

if (Z I (z -Z )f*(6f z. * f* + i' ij ij (6)

where Zij and Z . denote the jth elements in z and Z*. f! denotes

f and

%J =

We suppose that Z! is obtained from Z by rounding to the center of
ii j

an interval of width 6 , for j = 1,2,...,k+1 and i = 1,2,...,n. The E-

step requires averaging over the conditional distribution of Z. given that-I

Z. lies in the rounding rectangle centered at Zt. Dividing the marginal

density (6) by its integral over the rounding rectangle means, to the desired

k
first order accuracy, dividing (6) by ft H 6 Denoting by E the

operation of averaging with respect to the appropriately scaled density1 , we

find

1 k+l
+ - + k+l k+l k+l

E. g., E(Z ...f t f* + t.f!] dt /f! 6
g E(ij-j i 61 6 k+l j=l i j1 j=l

2 2
where ti= (Z j-Z~j.ij ijijwher t =(z ~* )-11-
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62
z (Z~ z)()

• 12 f)

12

z (Z Z-51( z1 - " 0 (10)

ii zi)it

for all i, J, w ith j 1' . From (9), (9) and (10) we obtain
62 f0

B(Z~1  -* fi (ij 12 f*

an (z51 - z + 11 +~ 2ziL (112)

2i 2z (Ziz 1 ZtsI + i +I -Ot zl j P(1 3)

for ll i, J, IL ith 10 A .r Note that the ratio ftj/l/P is the partial

derivative of log f1 (Z ) with respect to Z at Z Z"

Siii ii ii-
The Z-step is completed by summing (11), (12), and (13) over i -

1,2, ..,n, whence the required adjustment8 to the sufficient statistics

,~ j I _ , Z' and- Z-;* are respectively,
i-i i i

82 n f

+; -z5'+J (14
12n

and 2 n + n
1 1 Z

fj 
+  I z  f it ( (16)

-12-
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4. Special Cases leading to the use of Sheppard's Corrections

There are two particular cases where the likelihood analysis of Section 3

for small rounding error leads to Sheppard's corrections for regression

coefficients: (1) when the rows of X are a normal sample and (2) when the

rows of X are a *regular* sample and n tends to infinity. The second case

is more fundamental because the entire likelihood analysis leading to the use

of maximum likelihood estimates is predicated on large samples.

When X is normal, Z is normal with mean say U and variance E. We

start the EM algorithm at the usual moment estimators based on rounded data,

say Z* and S*. Then at = Z* and E S*

- (Zi - -*)S* (Zi *)TI

(17)

th --
= the J component of - S (Z* - ')

- A

We are now ready to calculate the E-step, that is, to calculate the

adjustments to the sufficient statistics. From (14) we see that the

adjustment to n Zi is zero because [ (Z - Z)- 0. From (15) the
ni i i - -

adjustment to the quadratic sufficient statistic -1 is 82/12, and
ni ij j

from (16) the adjustment for the quadratic sufficient statistic, Z Zi Ell,

is zeroi these follows because

) z(f f f/) - z[ -1 (z - )] - -n . (1)

Consequently, when (Y,X) is jointly normal and the rounding errors are

vanishingly small, maximum likelihood estimates of regression parameters of

Y and X are obtained by applying Sheppard's corrections to the covariance

matrix of (Y,X): simply subtract 62/12 from the corresponding diagonal

-13-



element of the covariance matrix where 6 is the width of the rounding

rectangle. The likelihood justification for the use of Sheppard's correction

with small rounding error and univariate normal data appears in Fisher (1922)

and Lindley(1950).

The second case for Sheppard's corrections treats large samples from

n
regular X. As n * m, the summations ! in (14), (15) and (16) can be- n -
replaced by expectations over the distribution of Z*, doing so, we obtain

simplified first order corrections appropriate in large samples.

Specifically, the

correction to Zi is

_E * {  [log f(Z* I#*)] } (19)

the correction to Z2 is
n ± ij

12

and the correction to ' ZjZi, j t, is
ni iji

62

12 log f(Z* +*)} *--*{Z* log f(z**)} (21)12"3 j 12 "ij z t "i "

where #* is the maximum likelihood estimate of * assuming the rounded data

were unrounded, and K* is the expectation over the distribution of Z. As

all 6 + 0, an expectation over the distribution of rounded data, Z*, will

equal the corresponding expectation over the distribution of unrounded data,

Zi' plus terms of order 6 and higher. Since each expectation in (19) -

(21) is multiplied by a factor of 62 to order 62 expectations * over

the distribution of Z may be replaced by expectations 9 over the

-14-



distribution of Z Then, if f(Z I.*) is sufficiently smooth to allow us

to interchange the order of integration and differentiation in these

expectations, expressions (19) - (21) exactly equal their values under

normality, as we now show.

Consider first the expectation in expression (19), E{- [log f(Z)]),

where for notational convenience we suppress the irrevelant subscript i and

replace f(ZI*) by f(Z). For all u,

ff(Z-u) dZ - I

Thus,

3uff(Z-u) M - 0
au ree to th - tLetting DJ refer to the partial derivative with respect to the jth argument,

and passing the derivative through the integral gives

f (- Df f(Z-u)Jdz - 0

and letting u = 0 implies

fS f(Z) dZ= 0
3

or

f a [log f(z)] f(Z) z 0

Thus,

E -j [log f (Z)] - 0

Next consider the expectation in expression (20),
E{Z L [log f(z) I

f(Z8]

For all u,

fz f(Z-u) dZ - +f Z f(Z) M.. (22)

Hence
a
u f , f(Z u) M I .

Passing the derivative through the integral gives

I z [-Di f(Z-u)z - 1

-15



Letting u - 0 gives

E{zj T- (log f(z)J} -- 1

Finally, in order to evaluate the expectation in (21), from (22)

f~ fZf(Z-u) d-O0,

Passing the derivative through the integral and letting u - 0 gives

*~ a(. [log f(z)]1 - 0, 1 i

The regularity condition -an fail. For example, with uniformly

distributed X, the correction to the variance is equal to Sheppard's

correction, but opposite in sign, a fact pointed out by Elderton (1938).

Moreover, when the second derivative of the density of X is large in

absolute value, as with short, abrupt-tailed distributions, the value of the

appropriate maximum likelihood correction with finite n can be quite far

from its large sample limit because a log M 16) has large variance.

Long tailed distributions for X like the Cauchy do not offer any problems

with respect to the variance of this partial derivative, but do require

larger n for the likelihood of 0 to be sufficiently concentrated about

0' to justify the approximations used here.

i -16-



5. Conclusions

With small enough rounding errors and a large enough sample, our analysis

and example suggest that Sheppard's corrections applied to the cross products

matrix of independent variables will generate appropriate corrections to the

regression coefficients in normal linear regression analyses. With moderate

rounding errors or moderate sample size, however, it appears that a serious

attack on the problem must confront the fact that valid inferences for the

regression coefficients will vary with the specification of the distributional

form of the independent variables. Further research will be needed before the

limits on the practical usefulness of Sheppard's corrections can be stated.

Experience with various plausible choices of distributions for the independent

variables will require development of feasible computational tools.

-17-



REFERENCES

Beaton, A. K., Rubin, D. B. and Barone, J. L. (1976). "The Acceptability of

Regression Solutions. Another Look at Computational Accuracy". Journal

of the American Statistical Association, 71, (353), pp. 158-168.

Cochran, W. G. (1968). "Errors of Measurement in Statistics". Technometrics,

10, pp. 637-666.

Dempster, A. P., Laird, N. and Rubin, D. B. (1977) "Maximum Likelihood from

Incomplete Data via the EM Algorithm". The Journal of the Royal

Statistical Society - B, 39, 1 pp. 1-38.

Durbin, J. (1954). "Errors in Variables". The Review of the International

Statistical Institute, 1, 3, pp. 23-32.

Eisenhart, C. (1947). "Effects of Rounding on Grouping Data". Chapter 4 of

Selected Techniques of Statistical Analysis, C. Eisenhart, N. Hastay,

W. A. Wallis, pp. 185-223.

Elderton, W. P. (1938). "Correzione dei Momenti Quando la Curva '61

Siimetrica". Giomale dell' Istituto Italiano degli Attuari, 16, pp.

145-158.

Fisher, R. A. (1922). "On the Mathematical Foundations of Theoretical

Statistics". Phil. Trans. Roy. Soc. A, 222, pp. 309-368.

Haitovsky, Y. (1973). Regression Estimation from Grouped Observations.

London: Griffin.

Kendall, M. G. and Stuart, A. (1962). The Advanced Theory of Statistics,

Volume I. New York: Hafner.

Lindley, D. V. (1950). "Grouping Corrections and Maximum Likelihood

Equations". Proceedings of the Cambridge Philosophical Society, 46, pt.

7, pp. 106-110.

' i -18-

Im.;



Longley, J. W. (1967). wAn Appraisal of Least Squares Programs for the

Electronic Computer from the Point of View of the User m. Journal of the

American Statistical Association, 62, pp. 819-841.

Sheppard, W. F. (1898). "On the Calculation of the Most Probable Values of

Frequency Constants for Data Arranged According to Equidistant Divisions

of a Scale". Proceedings of the London Mathematical Society, 29, pp.

353-380.

Wold, H. (1934). -Sheppard's Corrections Formulae in Several Variables".

Skand. Akfuartidskr., 17, 248.

I

I APD/DDR/Jvs

- 9-



SECURITY CLASSIFICATION OF THIS PAGE (Ithen Dlet. Entered)
REPOR DOC~kEHTTIOHPAGERC:^ INSTRUCTION S

REPORT DOCUMENTATION PAGE E IFORM

1. REPORT NUMBIR 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

#2362

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVEREO

Summary Report - no specific
Rounding Error in Regression: The Appropriateness reporting period
of Sheppad's Corrections 'S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*) 5. CONTRACT OR GRANT NUMBER(&)

Arthur P. Dempster and Donald S. Rubin DAAGZ-80-C-0041

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Mathematics Research Center, University of Work Unit Number 4 -
610 Walnut Street Wisconsin Statistics and Probability
Madison, Wisconsin 53706

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office April 1982
P.O. Box 12211 IS. NUMBER OF PAGES

Research Triangle Park, North Carolina 27709 19
14. MONITORING AGENCY NAME & ADDRESS(If diffentom Contrllingd Office) IS. SECURITY CLASS. (*I this repor)

UNCLASSIFIED
IS&. OECL ASSI FICATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT rot thla Repom)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol tho be recenterd In Block 20. i dil fotni km Repot)

IS. SUPPLEMENTARY NOTES

It. KEY WORDS (Continue on rovers* aid. it neceaese and identify by block nmibOr)

E14 algorithm, grouping, incomplete data

20. AOTIACT (Continue an rovers* aide It n and Idenify by block number)

-We consider three simple approaches to rounding error in least squares

regression. The first treats the rounded data as if they were unrounded, the
second adds an adjustment to the diagonal of the covariance matrix of the
variables, and the third subtracts an adjustment from the diagonal. The third,
Sheppard' s corrections ,can be motivated as maximum likelihood with small rounding
error and either (1) joint normal data or (2) normal residuals, Vregular"
independent variables, and large samples. Although an example and theory
suggest that the third approach is usually preferable to the first two, a -*/

DD , 1473 EDITION OF I NOVS IS OBSOLTZ UNCLASSIFIED (c)

SECURITY CLASSIFICATION OF THIS PAGE X;; ba. gaIeroed

i
J .. . ,. b . . ... .. i i , , .. .. . . .... . . ... .. -- r. . ... .., . . . I ] I l ] II I I V -



ABSTRACT (continued)

generally satisfactory attack on rounding error in regression requires the

specification of the full distribution of variables, and convenient computa-

tional methods for this problem are not currently available.
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